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There is no doubt that recent in-vehicle technologies such as GPS maps, 
entertainment systems and mobile telephones increase crash risk, the unknown is to 
what degree. Cars offer unique challenges in human-machine interaction.  Vehicles are 
increasingly becoming automated systems that collaborate with, rather than are 
controlled by, the driver.  In this paper we suggest an approach that, by design, 
minimises and manages information system distractions.  It is not possible to know 
what the driver is thinking. We can, however, monitor the driver’s  gaze and compare it 
with information in their view-field to make an inference.  We outline our capabilities in 
road scene understanding and driver monitoring. Then demonstrate how our 
capabilities can be used in driver assistance systems with intuitive and integrated 
human machine interfaces. 

 
 
Introduction 
 
There is no doubt that recent in-vehicle devices such as GPS maps, entertainment systems 
and mobile telephones increase crash risk (Stutts, Reinfurt, Staplin & Rodgman, 2001).  
Using on a mobile phone, for example, is thought to increase crash risk up to four times, 
with hands free usage no safer (Redelmeier & Tibshirani, 1997). The ICT revolution has 
brought waves of additional information to the driver, together with the potential of making 
cars safer.  We are fast approaching the age of automatic driver ‘assistance’. The crucial 
question is how to develop systems and interfaces to truly make them an aid for the driver, 
not suffering the same pitfalls of driver distraction.  Hopefully, through new approaches, not 
only could these systems be no further distraction but also enable a mechanism to 
overcome distraction problems with existing devices. 
 
Cars offer unique challenges in human-machine interaction. Combining the strengths of 
machines and humans, and mitigating their shortcomings is the goal of intelligent-vehicle 
research. Traditionally in-vehicle systems have monitored the driver's actions; steering, 
pedals, buttons, to infer the intentions of the driver.  However, recent advances in computer 
vision make it possible to observe the driver and the road scene and thereby make 
inferences about the driver’s observations and behaviour (illustrated in Figure 1). Through 
road scene analysis and observing of the driver's face we can estimate what the driver 
knows, what the driver needs to know and when the driver should know.  
 
Direct driver monitoring offers: 

• Inattention detection through eye gaze monitoring.  
• Fatigue detection through eye gaze, blink and head tracking. 
• A feedback channel of driver behaviour. 
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Figure 1: Introducing driver observation monitoring to supplement driver action 
monitoring. 

 
 
Combining driver gaze with road scene information potentially offers: 

• Context relevant information selection (e.g., the driver looking elsewhere,  speed sign 
passed,  no speed change,  so alert the driver); 

• Unnecessary information suppression (e.g., the driver is looking, so stop all the 
beeping!); 

• Anticipatory information selection (e.g., the driver is looking to change lanes, a car in 
the blind-spot is now a threat). 

 
We have investigated a number of applications where driver state monitoring is combined 
with road scene information.  The first application we propose is a system that warns the 
driver when the gaze is directed away from the road for too long.  We then demonstrate how 
automatic gaze and lane tracking can be used for research into driving patterns.  Finally, we 
present a demonstration system which uses gaze monitoring and automated sign 
recognition to warn only when signs have been missed by the driver.  In this system a 
glance at the speedometer is used to acknowledge warnings. 
 
Now we discuss why autonomous systems researchers have a growing interest in driver 
assistance technologies. Then outline our capabilities in driver assistance systems by road 
and driver monitoring.  
 
 
Driver Assistance Systems 
 
Early research in autonomous vehicles focused on fully autonomous driving. A famous early 
system pioneered by Dickmanns and Graefe (1998a, 1988b) was able to steer a vehicle at 
over 100 km/h on well formed roads. In the 1990s, the SCARF system from the CMU 
Navlab could handle more degraded roads (Crisman & Thorpe, 1993). Demonstrations of 
subsequent work in the field has shown impressive robustness, for example, the Navlab ‘no 
hands across America’ trial steering autonomously for 98% of the way for 302 miles. 
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However, the small remaining portion of time required for a fully autonomous vehicle is 
highly challenging to automate. Having an automated system handle all of the possible 
circumstances is extremely difficult. As accident statistics show, even humans cannot even 
perform this task perfectly. 
 
Driver support, on the other hand, offers immediate applications. Here we can use current 
capabilities to support the driver and automate simple aspects of driving, while leaving 
critical decisions to the driver. By supporting the driver at increasingly higher levels, driver 
support provides a path toward autonomy. 
 
What is a Driver Assistance System?  
 
A Driver Assistance System (DAS) is an automated system used to: relieve the driver of 
tedious activities, warn about upcoming or missed events, and possibly take control of the 
car if an accident is imminent. A useful analogy for a Driver Assistance System is a vigilant 
co-pilot (as explored in Petersson, Fletcher, Barnes & Zelinsky, 2004). A Driver Assistance 
System must mimic a co-pilot by working: intuitively, unobtrusively and controllably: 

• Intuitively in that the behaviour of the system must make immediate sense to the 
driver in the context of the standard driving task; 

• Unobtrusively as driver assistance is only an aid if it is not distracting or 
unnecessarily disruptive; and 

• Controllably in that ultimate control rests with the driver.  
 
Related work in Driver Assistance Systems 
 
The car industry and related companies are quickly moving towards more complex systems 
to deploy in production vehicles. Adaptive cruise control (ACC), such as the DISTRONIC 
system offered by Daimler Chrysler, is a good example of autonomous vehicle technology 
integrated into a Driver Assistance System.  
 
Understanding how we go about the act of driving has long fascinated researchers. Gordon 
(1966) investigated the perception problem of driving in the 1960s. Land and Lee (1994) 
investigated a number of correlations between driver behaviour and eye gaze. Moving to in-
vehicle automated systems, Apostoloff and Zelinsky (2003) showed a clear correlation 
between the eye gaze direction and road curvature in logged data, the driver apparently 
observing oncoming traffic. This was confirmed by the work of Takemura, Ido, Matsumoto 
and Ogasawara (2003) who demonstrated a number of correlations between head and eye 
movement and driving tasks in logged data. 
 
Hence, in addition to the direct observation of the driver for inattention, driver monitoring 
may be useful for validating road scene activity. By monitoring where the driver is looking, 
much redundant information can be screened. This is a key mechanism for implementing an 
unobtrusive and intuitive system: unnecessary warnings can be suppressed and necessary 
warnings can be made more relevant. 
 
 
The Smart Cars Project  
 
The Smart Cars project was initiated in 2000 at the Australian National University's 
Research School of Information Sciences and Engineering. A research platform was built on 
a 4WD Toyota Land Cruiser equipped with sensors, computing hardware and modified 
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steering, braking and throttle. The focus of the project is advanced driver assistance 
systems—systems that assist, not replace, the driver.  
 
The focus of this project is to further identify effective methods for advanced driver 
assistance, to develop particular sensing, detection and human machine interface systems, 
and to make them robust and reliable.   
 
: 

  
(a) (b) 
 

Figure 2: (a) The vision systems in the vehicle. The CeDAR active camera 
platform (containing the scene camera) and FaceLAB passive stereo cameras 
are labelled. (b) The distributed modular software architecture. 

 
 
Figure 2 (a) shows the principle vision systems on the vehicle. Stereo cameras are mounted 
in place of the review mirror looking outward at the road scene in front of the vehicle. A 
second pair of cameras are on the dashboard of the vehicle as part of the FaceLAB driver 
tracking system (see following section).  A significant effort has been invested in the 
software system in the vehicle the software configuration is modular so that different 
configurations can be instigated easily (as illustrated in Figure 2 (b)).  Computing is done on-
board the vehicle using several standard desktop computers. 
 
 
Direct driver monitoring  
 
As mentioned above, curiosity about the relationship between driver gaze direction and the 
on driving task is not new. Studies dating back to the 1960s have correlated eye gaze 
direction with various on and off driving tasks. Most driver monitoring has been manual, 
either by direct driver observation by a research assistant or manual annotation of video 
tape.  The Australian National University with sponsorship from Volvo Technological 
Development endeavoured to develop an automated system to monitor a driver’s head 
position and eye gaze direction. The outcome of the project was so successful that the 
product has now been developed commercially by a spin-off company SeeingMachines. The 
developed system (known as FaceLAB (SeeingMachines, 2004) uses two cameras 
mounted on the dash of a vehicle to observe the face of the driver (see Figure 3).  The 
system provides eye gaze direction, eye closure and blink detection as well as head position 
information. The images from the cameras are processed in real-time to determine the 3D 
pose of the  driver’s head (to ±1mm translation,  ±1° rotation) and eye gaze  ( ±1° rotation).  
Much of the design effort has gone into making the system very robust to extremes of 
illumination and driver appearance common in vehicles.  
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The Smart Cars project is a client of SeeingMachines using the FaceLAB system for our 
driver assistance systems without conducting computer vision research into head and gaze 
tracking. 
 
 

 
(a) (b) 
 

Figure 3: Screen-shots of FaceLAB system. (a) Eye gaze direction superimposed 
on driver’s face. (b) Model of vehicle labelling regions of interest which can be 
detected by the system (SeeingMachines, 2004). Observing the driver allows a 
number of possibilities.  Measuring the driver eye gaze direction, head position 
and eye closure behaviour has generated a wealth of information about the 
behaviour of the driver which is still to be fully investigated. Known fatigue 
measures such as Per Close (where the percentage period of eye closure is 
measured over a time window) are available as well as the flexibility to introduce 
new metrics.  

 
 
Percentage Road Centre 
 
A promising new metric uses the gaze direction over time. Victor & Johansson (in the press) 
have patented a system called Percentage Road Centre (PRC).  In this system an upper 
and lower bound is placed on the percentage of time the driver spends observing the road 
ahead. From trials they determined that there is a safe range in which drivers observe the 
road centre. A too high percentage ( > ~90%) can indicate fatigued state (e.g., vacant 
staring). A too low percentage ( < ~20%) than indicates inattention or distracted state (e.g., 
tuning radio). 
 
The group is now developing intervention strategies to attempt to safely draw the driver’s 
attention back to the on-driving task.   
 
 
Online distraction detection 
 
Similar to the percentage road centre metric, the driver gaze can be analysed to detect even 
shorter periods of driver distraction. The FaceLAB system readily allows the implementation 
of an online distraction detector.  
 
The gaze direction is used to reset a counter.  When the driver looks forward at the road 
scene the counter is reset. As the driver’s gaze diverges the counter begins. When the gaze 
has been diverted for more than a specific time period a warning is given.   
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The time period of permitted distraction is a function of the speed of the vehicle.  As the 
speed increases the permitted time period could drop off either as the inverse (reflecting 
time to impact) or the inverse squared (reflecting the stopping distance).  
 
The warning can be auditory, tactile or visual but should be capable of degrees in intensity, 
raised to the extent which the diversion is over time.   
 
Once the driver is observed to have had a stable gaze at the road ahead the counter and 
the warning is reset until the next diversion.  Since the vehicle speed is considered normal 
driving does not raise the alarm.  As more dramatic movements such as over the shoulder 
head checks occur  at slow speeds the tolerance is longer. Situations, such as waiting to 
merge, where the vehicle is not moving permit the driver to look away from the road ahead 
indefinitely without raising the alarm. 
  
 
Road scene understanding 
 
A significant amount of the Smart Cars project has been invested into the analysis of the 
road scene. Several systems have been developed to detect or track the core features the 
road environment. We will briefly outline a number of systems investigated.   
 
 
Lane tracking 
 
The most dominant feature of the road scene is the road ahead which is why this was the 
first system developed by the group.  
 
 

 
 

(a) (b) 
 

Figure 4: (a) The lane tracker uses three different image processing methods to 
find the lane robustly. (b) Particle filtering is used to track multiple road 
hypotheses. 

 
 
The lane tracking system is based on a generic tracking framework named the Distillation 
algorithm (Loy, Fletcher, Apostoloff & Zelinsky, 2002) made to support visual ambiguities 
and use multiple image processing techniques to produce a robust road estimate.  The road 
scene image was analysed using several image processing techniques to create 
redundancy and robustness to the estimated road position (see Figure 4 (a)). These 
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different visual cues were combined using a particle filter to track the estimated road 
position (see Figure 4 (b)).  
 
The particle filter is a hypothesis verification based technique so only feasible lane models 
were evaluated.  This technique makes the lane tracker tolerant to strong shadows and a 
varying road conditions (as shown in Figure 5 (a)).   
 
Correlating eye gaze with lane tracking 
 
An early attempt to correlate driver monitoring and eye gaze also showed promising results 
(see Figure 5 (b)).  
 
 

(a) (b) 
 

Figure 5: Lane Tracking results. (a) Lanes tracked in a variety of conditions. (b) 
Lane tracking correlated with driver gaze for different road regions. 

 
 

(a) (b) 
 

Figure 6: (a) Gaze direction compared with vehicle yaw. (b) Gaze per road 
region.     

 
The lane tracking system was used to orient the driver gaze information. Using FaceLAB 
and the lane tracking system known correlations between the driver’s gaze and the road 
ahead were identified. For example the driver was observed gazing at the tangent of the 
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road curvature (Figure 6 (a)) and varying gaze scan patterns were noted based on different 
road types (Figure 6 (b)).  This work was published in detail in Apostoloff and Zelinsky 
(2003). 
 
 
Road obstacle detection 
 
The group then used the same Distillation framework as above as a component of a 
obstacle tracking system. The obstacle detection and tracking system uses stereo vision, 
motion, edges and colour consistency to segment and track obstacles such as vehicles.  
 
The system has three phases running concurrently. The detection phase segments potential 
obstacles from the stereo depth map and motion image (Figure 7). These potential 
obstacles are very rough guesses prone to many false positives (see Figure 7 (a)). These 
guesses are placed into the Distillation framework mentioned above, as an object in space 
with a specific size and location. These objects are tracked over time using the Distillation 
framework.  True obstacles form clusters in the Distillation framework where as false detects 
dissipate (as illustrated Figure 7 (b)).   
 
 

 
(a) (b) 
 

Figure 7: (a) top: Greyscale image, bottom: disparity map with road surface 
removed (dark is far, bright is close). The car on the left is across a disparity 
range from 15-23 pixels, the car on the right at 7 pixels, cars in the distance are 
4-6 pixels. (b) Obstacle distillation: Uni-modal clusters in the particle filter are 
extracted for tracking. 

 
 
Once the particles of an object have consolidated sufficiently to present a good estimate of 
the size and location of the obstacle, the object is tracked using a simpler tracker namely 
Kalman filter and template correlation (as shown in Figure 8).   Later in this image sequence 
the centre car is lost due to a template tracking failure (only one template is tracking reliably 
at this stage), then the second phase of the system quickly detects the vehicle again. The 
obstacle detection system is discussed in Fletcher, Petersson and Zelinsky (2003). 
 
 
Pedestrian detection 
 
To detect pedestrians our aim was to detect critical pedestrians in front of the vehicle - 
critical pedestrians are regarded as those who are in immediate risk of injury by the vehicle 
(as illustrated in Figure 9). 
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Figure 8: Output of obstacle tracker. Rectangles indicate obstacle bounding 
boxes, ‘+’ indicate correlation template locations, ‘*’ indicate centre of obstacles. 

 
 

 
 

Figure 9:  The distinction between critical and non-critical pedestrians (We aim to 
detect the critical pedestrians) 

 
Stereo vision is used to perceive the environment in front of a host vehicle, thus providing 
3D scene information. This approach has the advantage of not being fooled by 2D 
representations such as billboards depicting people.  
 
The software consists of three components: obstacle detection, obstacle classification and 
pedestrian tracking. General obstacles are detected by segmenting a 3D representation of 
the scene in front of the vehicle. Such 3D representation is obtained from a disparity map 
created from the stereo image pair. Objects are segmented from the disparity map using the 
v-disparity algorithm (Labayrade, Aubert, & Tarel, 2002) which is a robust, fast and accurate 
method for segmenting noisy disparity maps. The method provides scene understanding by 
recovering the ground surface and recognising which objects are on the surface.  Figure 10  
illustrates the operation of the v-disparity object detection algorithm. 
 
Once segmented, each obstacle is classified as either pedestrian or non-pedestrian based 
on pedestrian shape using Support Vector Machines (SVM). Our system uses two SVMs - 
one to recognise pedestrians in a front/rear pose and another to recognise side pose.  The 
pedestrian shape is extracted by using an edge detector, then only the most distinguishing 
pixels from this edge image are chosen as the pedestrian representation. 
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Figure 10:  (a) Left image, (b) disparity map, (c) v-disparity image, (d) 
segmentation of the left image. 

 
 
Both obstacle detection and classification generally provide robust results. However, the 
results can be incorrect, due to obstacle localisation results being noisy and obstacle 
classification providing false detection. Pedestrian tracking aims to minimise the effect of 
false positive and negative classification by observing pedestrian candidate over time. The 
tracking algorithm uses a Kalman filter to provide estimates of location, velocity and 
pedestrian classification certainty over time. 
 
Our system was evaluated by in-vehicle testing in both simple and complex scenarios, with 
scene complexity rated according to 3D structure. Figure 11 shows sample frames from four 
scenarios were used to quantitatively determine detection rate. A detailed description of the 
pedestrian detection system is in Grubb, Zelinsky, Nilsson and Rilbe (2004). 
 
 
Blind-spot monitoring 
 
Blind-spots are the cause of many accidents with other vehicles, as well as more vulnerable 
road users. Conventional cameras typically have one third or less of the perceived field of 
view of the human eye.  Convex mirrors are one approach to panoramic imaging that have 
been utilised extensively in the field of robotic navigation. The sensor consists of a video 
camera which views a cone-like mirror. With the mirror on the optical axis, a full 360° can be 
viewed in the azimuth direction.   
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Figure 11: Sample frames from the four test scenarios. Pedestrians are 
highlighted with range and bearing. 

 
 
An example of an image acquired by a panoramic sensor can be seen in Figure 12 (a). 
These raw images are difficult for humans to understand, but they can be unwarped to 
create a more intuitive panorama, as seen in Figure 12 (b). Our system consists of two 
panoramic sensors, one 400mm above the other. Approximately 200° of the sensor field of 
view is used.  Once the sensor has captured images of the blind-spot, these images are 
processed using an on-board PC to determine where obstacles are situated in the work 
space.  
  
 

 
 

Figure 12: Epipolar lines are mapped from radial lines in the warped image (a) to 
parallel lines in the unwarped image (b). 

 
With the camera axes aligned, the epipolar constraint corresponds to radial lines. When the 
images are unwarped, these become vertical parallel epipolar lines (again see  
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Figure 12), and permit many conventional image processing techniques. In this case, 
disparity maps are generated by performing stereo matching along these lines using a 
tandard window-based normalised cross correlation search.  

e of the exact orientation of 
e ground plane, and is able to segment noisy disparity maps. 

ngle frames, and as a result false detections 
ere easily filtered out by checking over time.  

ntelligent Vehicles Symposium in Parma, Italy 
atuszyk, Zelinsky, Nilssonn & Rilbe, 2004). 

 

s
 
Obstacle detection was performed by first applying the v-disparity algorithm (Labayrade, 
Aubert & Tarel, 2002) to the panoramic disparity maps and then segmenting the output. It is 
well suited to this application as it requires no a priori knowledg
th
 
Due to the distortion present in the unwarped images disparity maps produced in these 
experiments were extremely noisy, however the algorithm was able to segment obstacles, 
as shown in Figure 13. Although, due to the high noise ratio present in the real-world 
panoramic disparity images, false detection of obstacles became apparent in the image 
sequences. These generally only occurred in si
w
 
Our results indicate that range can be estimated reliably using a stereo panoramic sensor, 
with excellent angular accuracy in the azimuth direction. Furthermore, this sensor has the 
advantage of a much higher angular resolution and larger sensing volume than currently 
available.  This system was presented at the I
(M

 
 

d 
image, with obstacle detected. (b) Disparity map. (c) v-disparity. (d) u-disparity. 

isual monotony detection 

Figure 13: Obstacle detection results from the field experiments: (a) unwarpe

 
 
V
 
A great irony of transport systems research is that advances in road and vehicle safety can 
end up causing new threats to road users.  Car manufacturers and infrastructure authorities 
have collaborated to attenuate stimulation from the off-driving tasks and ease the on-driving 
task. The unfortunate consequence is that drivers, now more than ever, are disengaged with 
the road environment other than the lane keeping task. If the task of lane keeping is under-
stimulating, even for periods less than 20 minutes, the driver is susceptible to fatigue 
(Thiffault & Bergeron, 2003). Consequently, sections of road that were once prone, for 
example, to head on collisions, are become fatigue accident zones (after divided multi-lane 
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road redesigns). Ingersen (1995) found that in Australia most fatigue accidents occur on a 
few high quality routes. 
The contributing factors of fatigue can be divided into endogenous (internal origin) and 
exogenous (external origin) sources (Figure 14). Lack of sleep can be considered an 
endogenous factor while lying in a darkened room would be an exogenous factor. Figure 14 
(a) shows the decomposition of contributing factors of fatigue. A recent trend in the 
psychology literature is to define monotony as an exogenous factor as opposed to a mental 
state (which would be endogenous, similar to boredom (Thiffault, 2004). In this way 
monotony can be used as an attribute of a task in a particular context. The monotony of the 
task can be decoupled from the actual mental state of the person. So regardless of how a 

sk effects a person, if there are infrequent (or periodic) stimulus, low cognitive demand 

tios are 
chieved by coupling an effective lossy compression scheme with an update procedure that 
an efficiently represent small motions and appearance changes between frames.  

 
 

ta
and low variance of task, it can be termed monotonous. 
 
To automatically measure the monotony in a road sequence we require a metric of the 
variance (or information content) of the video sequence over time, MPEG encoding fills this 
requirement.  Moving Picture Experts Group (MPEG) encoding is a scheme for compressing 
a series of video frames. MPEG exploits the property that in moving pictures only small 
regions of the image actually change substantially between frames. Most of the frame is 
static or translates in the image, varying marginally. Impressive compression ra
a
c

 
(a) (b) 
 

ributing to fatigue 
(Thiffault, 2004). (b) Various MPEG file sizes versus a human evaluated 
monotony scale. 1 = very monotonous, 10 = very stimulating. 

Figure 14: (a) Endogenous and exogenous factors cont

 
 
To verify that MPEG encoding correlates with the monotony of a scene a monotony detector 
was implemented using the open source libavcodec library which provides an MPEG4 
encoder. Every 60th image was selected from the scene camera for compression. This 
represents a 1 second gap between frames. A sliding window of 150 images was 
compressed representing a time period of 2 minute 30 second window. The frames were 
320x240 colour images and compression took around 1 second on a Pentium IV 3.0GHz 
machine. Compression was performed every 10 seconds.  The encoded files showed a 
good spread of sizes with a factor of two difference between the smallest and largest files. 
The MPEG/JPEG ratio shows that there is no correlation between the size of a JPEG 
sequence, representing only scene complexity, and the MPEG sequence, representing the 
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change in the image, over time. When compared to a human judged monotony scale the 
MPEG file size has a strong correlation (see Figure 14 (b)). The sole outlier is the no lane 
markings sequence, which compresses very well but would have not been considered 

onotonous. The lack of sharp lane boundaries seems to allow a gentle transition between 

e of the road ahead to judge the visibility range. As 
e have a previously developed lane tracking system we will use the lane tracking look-

 at the expense of the far-field. As the near-
eld estimate converges the look-ahead distance is increased. Figure 15 illustrates how 
ad curvature estimate and look-ahead vary. 

 
 

m
the frames.  
 
The primary failing of the MPEG compression as a monotony detector is in situations of poor 
visibility such as fog. The task is not monotonous yet the video will compress well. Detecting 
these cases would be possible as other groups have demonstrated systems capable of 
estimating the visibility of the road ahead. Hautiere and Aubert (2003) implemented a 
system that decomposed the luminanc
w
ahead distance as a similar measure. 
 
The above mentioned lane tracking system had been augmented to use a clothoidal road 
curvature model. A confidence measure is used to vary the look-ahead distance. When the 
variance of the primary state variables (lateral offset, vehicle yaw and road width) increase 
beyond a small tolerance the look ahead distance is reduced to concentrate on robustly 
tracking the road directly in front of the vehicle
fi
ro

    
(a) 

 
(b)    
 

(a) Particle 
spread is small so a long look-ahead is used. (b) Particle spread has widened so 
the look-ahead distance has shortened. 

n the monotony detection 
ystem of detecting other subtle cases such as crests (which may not show up as significant 

tes and the sequence lengths. We trialled sampling at frequencies 
f: 4Hz (15[/60 frames]), 3Hz (20), 2Hz (30), 1Hz (60), 0.5Hz (120) with total durations of 10 
econds to 5 minutes.  

Figure 15: Lane tracking look ahead distance varies with certainty. 

 
 
The lane tracking look-ahead distance has the additional benefit i
s
changes in the compressed sequence) and the gravel road case.  
 
We conducted trials during daylight, dusk and at night. To investigate how best to use 
MPEG encoding to represent monotony we encoded a set of movies every 20 seconds on 
varying the sampling ra
o
s
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ring afternoon 

heading out of the city. Sample images from the camera are shown at the 

 
ight trial 

on a city, arterial and country roads. Sample images from the camera are shown 

 

 

Figure 16: MPEG compression and lane tracking look-ahead du

corresponding number with the lane tracking look-ahead distance. 
 

 

Figure 17: MPEG compression and lane tracking look-ahead during a n

at the corresponding number with the lane tracking look-ahead distance. 
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Figure 16 shows how a result of a day trial, while Figure 17 shows a result of a night trial. 
Overall the results were very promising. Both graphs show the largest trough in the MPEG 
le size when the car was stopped for a prolonged period at road works. Trends of smaller 

ne. 
ases such as moderate curvature country roads, crests and sections with no lane marks 
ere identified as less monotonous than the MPEG compression would suggest. The 

or is to be presented shortly in Fletcher, Petersson and Zelinsky (2005). 

n-like 
hapes in the input image stream. The system uses the fast radial symmetry operator 

ased purely on shape 
formation. It is a scan-line algorithm operating on the gradient image. Each edge element 
otes towards a set of possible centres for the circle or regular polygon in question. Figure 

18 shows the algorithm applied to detecting eyes and circular signs.  
 
 

fi
file size (or increased monotony) appear as the vehicle leaves the city for the highway and 
along the country road both during the day and at night.  
 
There is a good consistency across all MPEG frequencies and durations showing the 
monotony measure is well conditioned and not just an artefact of a particular sampling rate 
or total interval. The lane tracking look-ahead distance was effective in identifying sections 
of road with a higher monotony level than expected by the MPEG compression alo
C
w
monotony detect
 
 
Sign detection 
 
To understand the observations of the driver it is necessary to understand the information 
obtained by the driver from the road scene for this reason road signs need not only to be 
detected but also understood by our systems. Traffic signs are detected by locating sig
s
originally developed for eye detection (Loy & Zelinsky, 2003) that has been shown to 
effectively detect Australian speed signs from a moving vehicle based vision platform.  
 
The algorithm is a basis to detect a wide range of symbolic signs b
in
v

 
 

Figure 18: left: still frames. right: fast radial symmetry operator identifying eyes in 
faces and circles around speed signs. 
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(b) 
 

  

 
 

 

(a) 
 

tween speeds is significantly better with 
the enhanced sign.  Top: Classification with original frames. Bottom: 
Classification with enhanced images.   

bol or the text on the sign. Outliers are rare by chance as a false detect 
ould have to have a circular boarder moving coherently over time with a highly matching 

assify the sign with greater certainty, sooner (see Figure 19 (c)).  Sign 
etection and image enhancement was presented in Fletcher, Peterrson, Barnes, Austin 
nd Zelinsky (2005). 

obstacle/pedestrian alert system that would also suppress warnings and acknowledge alerts 

(c) 

Figure 19: Image enhancement. (a) 60 and 80 Signs. Poor text resolution makes 
sign classification unreliable. (b) Enhanced 40 and 60 signs. Left: Enlarged final 
original frame Right: Enhanced image. (c) Classification over time between 40, 
60 and 80 templates. Differentiation be

 
 
By accumulating a large number of votes at a central point the method is robust to missing 
pixels due to lack of contrast or occlusions. As the detection phase of the sign recognition 
process is very effective at culling potential sign candidates only a simple classification 
scheme is required. The current classification scheme simply uses template correlation to 
identify the sym
w
symbol within.  
 
Initially, due to the low resolution of text on an approaching sign, differentiating between 
speeds was prone to misclassification (demonstrated in Figure 19 (a)).  By using an 
incremental update technique, we were able to enhance the sign appearance (see Figure 19 
(b)), enabling us to cl
d
a
 
 
Driver observation monitoring 
 
To demonstrate how driver observation can be used as in interface for a driver assistance 
system we developed a speed sign reading system detailed below.  Many of the concepts 
used in this system are readily applicable or through analogous techniques usable for other 
driver assistive systems.  For example it is possible to imagine a lane departure or an 
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in a similar way.  The use of other driver aids such as GPS maps which may be distracting 
could be tempered by analysis such as eye gaze scan patterns and visual monotony to 
stimate the difficulty of the current on-driving task. 

ign Driver Assistance System 

as, if 
appears the driver is unaware of the information, the information can be highlighted.  

ce at the 
peedometer confirms that the driver is aware of his speed and the detected limit. 

nd. Driver monitoring is achieved via the 
e gaze tracking system and the vehicle speed.  

amera gaze configuration analysis 

sign is unknown we can instead model the 
ffect of the disparity in our confidence estimate. 

tion, will be most apparent for close objects and reduce by a 1/x 
lationship with distance.  

expected error for the majority of cases where the sign is 
rther away is significantly less. 

e
 
  
S
 
This system recognises critical signs in the environment. At the same time, driver monitoring 
verifies whether the driver has looked in the direction of the sign. If it appears the driver is 
aware of the sign, the information can be made available passively to the driver. Where
it 
  
In this case, when a speed sign is passed that the driver appears to have seen, the speed is 
simply recorded as the current speed limit.  However if it appears the driver is not aware of 
the sign, and over time, a speed adjustment does not occur, an alert may be given. The 
driver is still left in control, however missed information is presented to support the driver in 
an unintrusive way. Warnings are only given when the driver is not aware of the change of 
conditions. Finally, the warning is cancelled also by observing the driver—a glan
s
 
Whether to warn the driver about a detected sign is based on the behaviour of the driver 
several seconds before and after the sign was fou
ey
  
C
 
The scene camera and eye configuration is analogous to a two camera system (see  
Figure 20(a)). Gaze directions trace out epipolar lines in the scene camera. If we knew the 
sign depth we could re-project onto the eye and estimate the required gaze. The sign depth 
could be estimated using a second scene camera running the same detection software, or 
assumptions on sign size or road layout. It is desirable however, to maintain flexibility of the 
sign detection system which uses a single camera and has no strong assumptions on the 
sign size and road shape. Since the depth of the 
e
 
The effect of an unknown stereo disparity will be an unknown displacement along the 
epipolar line defined by the gaze direction projected onto the scene camera. The disparity, 
as with any stereo configura
re
 
To get an upper bound of the likely disparity error we can compute the worst case disparity 
for our camera configuration. With reference to Figure 20 (a) and using the scene camera 
centre as a world reference frame, the scene camera and gaze angles for a sign can easily 
be derived.  Given our camera field of view and position in the car the worst expected error 
due to stereo disparity is ±1.9° horizontally and ±0.9° vertically which are on par with other 
error sources in the system. The 
fu
 
In addition to the disparity error, the gaze tracking system has an accuracy of ±3° and the 
field of view of the foveated region of the eye (estimated to be around ±2.6°, Wandell, 1995) 
also need to be accommodated. The accumulated tolerance is the sum of the error sources 
which for our experimental setup comes to ±7.5° horizontally and ±6.6° vertically. The driver 
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is therefore very unlikely to see the sign if the sign and gaze directions deviate by more than 
ese tolerances. th

 
 
  

 
 

(a) (b) 
 

ths. Dotted horizontal line represents chance. Vertical dashed line 
represents ±7.5° derived tolerance. squares: 30m, Circles: 20m, Crosses: 10m 
points.  

 the expectation that while it is very hard to prove that the 
river saw the sign, it is possible to estimate, with a good confidence, when the driver was 

n.  

he system was able to detect speed signs around the University and evaluate the 

 watching a pedestrian and failed to notice a ‘40’ sign. The Driver Assistance 
ystem has detected that the driver did not see the sign and has issued a red sign: missed! 
arning.   

Figure 20: (a) The scene camera and gaze direction is analogous to a two 
camera system. (b) Driver recognition rate of signs in peripheral vision at various 
sign dep

 
 
Verification 
 
To test that the system was indeed able to detect when the driver missed a sign a 
verification experiment was conducted. The driver was asked to fix their gaze on an object in 
the scene. A sign was then placed at a certain distance from the fixation point. The driver 
was then asked to identify the sign. The proportion of correct classifications was logged 
along with the driver gaze angle and apparent sign position in the scene camera. 30, 20 and 
10 metre depths were tested against four different lateral displacements between the sign 
and fixation point, the sign size was 0.45 metres in diameter.  Figure 20 (b) shows the sign 
classification error rate of the driver versus the angle between the gaze and sign position. 
As expected recognition rates fall as the sign becomes peripheral to the driver’s field of 
view. The results of trial verifies
d
unlikely to have seen the sig
 
Trial results and discussion 
 
T
implications for the driver.  
 
Figure 21 shows a screenshot from the system demonstrating a typical case where the 
driver was looking in the direction of a sign and no alerts are issued.  In Figure 21 (a) the 
driver was
S
w
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Figure 21: Screen-shot of the system. The system has detected the ’60’ sign. 
The driver looked at the sign. top left: Live video, eye gaze ( large circles) and 
current status (overlaid text). bottom left: Last detected sign (small circles) and 
eye gaze. top right: 3D model of vehicle pos

 

ition, eye gaze (oversize bald head) 
and sign location. bottom right: Detected speed limit, vehicle speed, acceleration 
and count-down for speeding grace period. 

 
 

 
 

  
(a) (b) 

 

 watching pedestrian so sign was missed, vehicle 

Figure 22: Some scenarios for Signs Driver Assistance System. Top row: Live 
video, eye gaze (dots / large circles) and current status (overlaid text) during 
screenshot.  Bottom row: Last detected sign (small circles) and eye gaze (dots / 
large circles).  (a) Driver was
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speed is okay so no alert is given. (b) Driver missed the sign and is now 
speeding so driver is alerted. 

 
Figure 22 (b) shows an example of when the driver has missed the last sign and is now 
peeding for more than a predefined grace period so an alert is issued. The driver could 
ancel the alert by reducing speed or glancing at the speedometer as an acknowledgement.  

n be published in Fletcher, Loy, Barnes and Zelinsky (in preparation). 

e Smart Cars project.  In particular, we have discussed 
sion systems capable of lane, obstacle, pedestrian, monotony and sign detection.  We 

ne analysis for driver observation monitoring.  The system used 
aze monitoring and automated sign recognition to alert only when relevant information has 

uch systems demonstrate an interface which can minimise additional distractions and 
other in-vehicle assistive technologies. 

nt Grubb for their 
ork on lane tracking, blind spot monitoring and pedestrian detection which are parts of their 

through Backing 
ustralia’s Ability and the ICT Centre of Excellence program. The support of the STINT 
undation through the KTH-ANU grant is gratefully acknowledged, as is the support of the 

Centre for Accident Research and Road Safety - Queensland (CARRS-Q). 

otics and Automation, 9(1), page numbers not included. 

s
c
This work will soo
 
 
Conclusions 
 
This paper has outlined the techniques for driver monitoring and road scene analysis using 
computer vision undertaken in th
vi
presented how driver gaze monitoring and a simple metric can be used to determine 
whether the driver is distracted.  
  
We then developed and verified a demonstration application where driver state monitoring is 
combined with road sce
g
been missed by the driver.  In this integrated system a glance at the speedometer is used to 
acknowledge warnings.  
 
S
mitigate distractions from 
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